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Price Problem
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Price Problem
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Linear Equation
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Linear Equation with offset
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𝑦 = 𝑎𝑓 + 𝑐

How to convert it to matrix-vector 
multiplication?

𝐴𝑥 = 𝑏
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House Features
• #Room
• Size
• #Bedroom
• Age
• Address features: Street, Alley, …
• Size of part1, part2, part3, part4
• Floors
• #Bathrooms
• …

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Which features are dependent on 
others?
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Linear Independence (Algebra)
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Definition

Dependent

❑ For at least one 𝜆≠0 0 = 𝜆1𝑣1 + 𝜆2𝑣2 +⋯+ 𝜆𝑛𝑣𝑛, 𝜆 ∈ ℝ

❑ A set of vectors is dependent if at least one vector in the set can be expressed as a linear 

weighted combination of the other vectors in that set.
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Linear Independence (Algebra)

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

Independent

❑ Only when all 𝜆𝑖 = 0 0 = 𝜆1𝑣1 + 𝜆2𝑣2 +⋯+ 𝜆𝑛𝑣𝑛, 𝜆 ∈ ℝ

❑ No vector in the set is a linear combination of the others (has only the trivial 

solution)
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Linear Independence (Geometry)
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Definition
A set of vectors is linear independent if the subspace dimensionality (its span) equals 

the number of vectors.

Example

❑ Are these vectors linearly independent?
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Example
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Example

❑ Let 𝑣1 =
1
2
3
, 𝑣2 =

4
5
6
, 𝑎𝑛𝑑 𝑣3 =

2
1
0

.

❑ a) 𝑣1 =
3
1
, 𝑣2 =

6
2

b) 𝑣1 =
3
2
, 𝑣2 =

6
2
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Properties
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Theorem 1

Any set of vectors that contains the zeros vector is guaranteed to be 

linearly dependent.
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Characterization of Linearly Dependent sets
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Notes!!!
❑Does not say that every vector
❑Does not say that every vector in a linearly dependent set is a linear 

combination of the preceding vectors. A vector in a linearly dependent set may 
fail to be a linear combination of the other vectors.

Theorem 2
An indexed set 𝑆 = {𝑣1, … , 𝑣𝑛} of two or more vectors is linearly 

dependent if and only if at least one of the vectors in 𝑆 is a linear 

combination of the others. In fact, if 𝑆 is linearly dependent and 𝑣1≠ 0, 

then some 𝑣𝑗 (with 𝑗 > 1) is a linear combination of the preceding 

vectors, 𝑣1, … , 𝑣𝑗−1.
Proof
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Characterization of Linearly Dependent sets
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Proof
Let 𝑗 be the largest subscript for which 𝑐𝑗 ≠ 0. If 𝑗 = 1, then 𝑐1𝑣1 = 0, which is impossible 

because 𝑣1 ≠ 0. So 𝑗 > 1 and

𝑐1𝑣1 +⋯+ 𝑐𝑗𝑣𝑗 + 0𝑣𝑗+1 + 0𝑣𝑛 = 0

𝑐𝑗𝑣𝑗 = −𝑐1𝑣1 −⋯− 𝑐𝑗−1𝑣𝑗−1

𝑣𝑗 = −
𝑐1

𝑐𝑗
𝑣1 +⋯+ −

𝑐𝑗−1

𝑐𝑗
𝑣𝑗−1
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Characterization of Linearly Dependent sets
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Proof
If some 𝑣𝑗 in 𝑆 equals a linear combination of the other vectors, then 𝑣𝑗 can be 

subtracted from both sides of the equation, Producing a linear dependence relation 

with a nonzero weight (-1) on 𝑣𝑗 . [For instance, if 𝑣1 = 𝑐2𝑣2 + 𝑐3𝑣3, then 0 = −1 𝑣1 +

𝑐2𝑣2 + 𝑐3𝑣3 + 0𝑣4 +⋯+ 0𝑣𝑛.] Thus 𝑆 is linearly dependent.

Conversely, suppose 𝑆 is linearly dependent. If 𝑣1 is zero, then it is a (trivial) linear 

combination of the other vectors in 𝑆. Otherwise, 𝑣1 ≠ 0, and there exist weights 𝑐1, … , 𝑐𝑛

not all zero, such that

𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑝𝑣𝑛 = 0



17

❑ The vectors coming from the vector form of the solution of 
a matrix equation Ax = 0 are linearly independent

Properties
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Example

❑Vectors related to 𝑥2 and 𝑥3 are linear independent.

❑Columns of A related to to 𝑥2 and 𝑥3 are linear dependent.

❑Span 𝐴1, 𝐴2, 𝐴3 = 𝑆𝑝𝑎𝑛{𝐴1}

A =
1 −1 2
−2 2 −4

𝑥 =

𝑥1
𝑥2
𝑥3

= 𝑥2

1
1
0

+ 𝑥3

−2
0
1
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Properties
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Important
❑ If a collection of vectors is linearly dependent, then any superset of 

it is linearly dependent.

❑ Any nonempty subset of a linearly independent collection of 

vectors is linearly independent.
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Properties
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Theorem 3

❑ Any set of p > 𝑛 vectors in ℝ𝑛 is necessarily dependent.

❑ Any set of p ≤ 𝑛 vectors in ℝ𝑛 could be linearly independent.

Proof
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Exercise
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Example

a.
1
7
6

,
2
0
9

,
3
1
5

,
4
1
8

b.
2
3
5

,
0
0
0

,
1
1
8

c.

−2
4
6
10

,

3
−6
−9
15
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❑ Suppose vectors 𝑣1, … , 𝑣𝑛 are linearly dependent:

𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑛𝑣𝑛 = 0

with 𝑐1 ≠ 0. Then:

𝑠𝑝𝑎𝑛 𝑣1, … , 𝑣𝑛 = 𝑠𝑝𝑎𝑛 𝑣2, … , 𝑣𝑛

● When we write a vector space as the space of a list of vectors, we 

would like that list to be as short as possible. This can achieved by 

iterating.

Linear Dependent Properties

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Linear combinations of linearly independent vectors
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Theorem 4
Suppose 𝑥 is linear combination of linearly independent vectors 

𝑣1, … , 𝑣𝑛:

𝑥 = 𝛽1𝑣1 +⋯+ 𝛽𝑛𝑣𝑛

The coefficients 𝛽1, … , 𝛽𝑛 are unique.

Proof
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❑ Step 1: Count the number of vectors (call that number 𝑝) in the set and 

compare to 𝑛 in ℝ𝑛 . As mentioned earlier, if p > 𝑛, then the set is necessarily 

dependent. If p ≤ 𝑛 then you have to move on to step 2.

❑ Step 2: Check for a vector of all zeros. Any set that contains the zeros vector 

is a dependent set.

❑ The rank of a matrix is the estimate of the number of linearly independent 

rows or columns in a matrix.

Conclusion

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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❑ Let f(t) and g(t) be differentiable functions.  Then they are called 

linearly dependent if there are nonzero constants 𝑐1 and 𝑐2 with  
𝑐1𝑓 𝑡 + 𝑐2𝑔 𝑡 = 0

for all t.  Otherwise they are called linearly independent.

Functions Linearly Independent
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Example

Linearly dependent or independent?

❑Functions 𝑓 𝑡 = 2 sin2 𝑡 and 𝑔 𝑡 = 1 − c𝑜𝑠2 𝑡

❑Functions {sin2 𝑥, cos2 𝑥 , cos 2𝑥 } ⊂ ℱ



Polynomials Linearly 
Independent
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Vector Space of Polynomials
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Example

Are 1 − 𝑥 , 1 + 𝑥 , 𝑥2 linearly independent?
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Linearly Independent Sets versus Spanning Sets
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Span Linearly Independent

Want many vectors in small 
space

Want few vectors in big space

Adding vectors to list only helps Deleting vectors from list only 
helps

Suppose that 𝑣1, … , 𝑣𝑘 are 
columns of A, now we have:

AX= b has solution
֞𝑏 ∈ 𝑠𝑝𝑎𝑛{𝑣1, … , 𝑣𝑘}

Suppose that 𝑣1, … , 𝑣𝑘 are 
columns of A, now we have:

AX = 0 has only trivial 
solution(X=0)

֞𝑣1, … , 𝑣𝑘 are linearly
independent.
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❑ Page 97 LINEAR ALGEBRA: Theory, Intuition, Code
❑ Page 213: David Cherney,
❑ Page 54: Linear Algebra and Optimization for Machine Learning

Resources
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